- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Fang, Lingzhe (2)
-
Gonzalez, Rena (2)
-
Li, Tao (2)
-
Harr, MJ (1)
-
Lee, Shao-Chun (1)
-
Lyu, Xingyi (1)
-
Nguyen, Huong (1)
-
Nguyen, Huong_T D (1)
-
Rai, Lalita (1)
-
Trojanowski, Lucas (1)
-
Z, Y (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 30, 2026
-
Fang, Lingzhe; Nguyen, Huong; Gonzalez, Rena; Li, Tao (, Nanotechnology)Abstract Aqueous electrolytes are promising in large-scale energy storage applications due to intrinsic low toxicity, non-flammability, high ion conductivity, and low cost. However, pure water’s narrow electrochemical stability window (ESW) limits the energy density of aqueous rechargeable batteries. Water-in-salt electrolytes (WiSE) proposal has expanded the ESW to over 3 V by changing electrolyte solvation structure. The limited solubility and WIS electrolyte crystallization have been persistent concerns for imide-based lithium salts. Asymmetric lithium salts compensate for the above flaws. However, studying the solvation structure of asymmetric salt aqueous electrolytes is rare. Here, we applied small-angle x-ray scattering (SAXS) and Raman spectroscope to reveal the solvation structure of imide-based asymmetric lithium salts. The SAXS spectra show the blue shifts of the lowerqpeak with decreased intensity as the increasing of concentration, indicating a decrease in the average distance between solvated anions. Significantly, an exponential decrease in the d-spacing as a function of concentration was observed. In addition, we also applied the Raman spectroscopy technique to study the evolutions of solvent-separated ion pairs (SSIPs), contacted ion pairs (CIPs), and aggregate ions (AGGs) in the solvation structure of asymmetric salt solutions.more » « less
An official website of the United States government
